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Abstract

The tBTC system is a design for a decentralized, 1-to-1 redeemable token

supply-pegged to BTC---in other words, a sidechain. The described design can be

implemented on a smart-contract-enabled host chain that supports custom tokens

and a subset of functionality needed to prove certain properties of Bitcoin

transactions. This spec in particular assumes the host chain is Ethereum. The peg

is implemented using an approach dubbed a bonded, multifederated peg, in which

a randomly chosen subset of a larger network of signing nodes is chosen to back

individual deposits requested by users wishing to mint TBTC tokens on the host

chain. The chosen signers use a threshold ECDSA protocol to generate a Bitcoin

wallet without any single signer having access to the corresponding private key,

and bond an amount of the host chain’s native token (ETH for Ethereum) that

ensures their behavior in the system remains honest, at risk of losing their bond in

case of dishonesty or undercollateralization. A smart contract on the host chain

mediates the deposit’s lifecycle, including opening deposits, collateralization,

signer fraud, and redemption. Redemption allows for a deposit to have its held

BTC withdrawn on the Bitcoin chain, and pays signers. Additional mechanisms are

described to properly incentivize a fixed term for deposits to ensure signer

compensation and to allow signer exit in case of impending undercollateralization.

Overview

Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in RFC 2119.

A note on naming
The system, in its entirety, is called "tBTC". In this document and throughout the project, the
fungible Bitcoin-backed token is called "TBTC" to distinguish it from the rest of the project. This
approach is also reflected in the Ethereum ERC-20 token contract.

Further discussion can be found in the relevant Github issue.
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Prior Work
Prior efforts toward a cross-chain Bitcoin peg are well-known. A Bitcoin peg is desirable for
sidechains- functionality and scalability extensions to the conservatively upgraded main Bitcoin
blockchain. Due to early interest in sidechains, a number of pegged Bitcoin approaches predate
Ethereum.

Centralized, Provable, Redeemable
Two solutions in the wild today provide centralized pegs that rely on trusted third parties based on
variants of the "federated peg" model.

In a federated peg, a multi-sig wallet is used to lock up bitcoins. Another blockchain then issues
tokens representing those bitcoin. The signers of the multisig on the Bitcoin chain are expected to
validate the sidechain, and only allow issued tokes to be burned in exchange for bitcoin
withdrawals following the rules of the sidechain.

Liquid, a sidechain developed by Blockstream, is an inter-exchange settlement network based on a
federated peg sidechain. Bitcoin is locked in a 15-signer multi-sig wallet comprised of exchanges
and Liquid participants pre-vetted by Blockstream. These signers validate the sidechain in an
approach the team calls "strong federation", where a majority vote to sign blocks, and agree to
approve exits to the main chain.

WBTC is a Bitcoin-backed ERC-20 token using a similar approach. The token is part of a greater
effort called "Wrapped Tokens".

Wrapped tokens follow the centralized model, but instead of relying entirely
on one institution, they rely on a consortium of institutions performing
different roles in the network.

— the Wrapped Tokens whitepaper

The WBTC consortium votes on adding and removing custodians that manage the token’s Bitcoin
reserves. Each custodian operates a multi-sig Bitcoin wallet, with control of all keys. Custodians are
able to move custodied bitcoin at will, and are responsible for minting WBTC on Ethereum.

Together, the custodians act similarly to a traditional federated peg. Instead of requiring a majority
to sign Bitcoin withdrawals, however, a single member can withdraw their share of the Bitcoin
reserves at any time.

Trade-offs

These approaches have a few clear benefits

• They each effectively peg Bitcoin on other blockchains.

• Backing reserves are easily audited on-chain at any time.

• Both are simple mechanisms, lowering the chance of operational failure as well as the total cost
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to operate.

However, there are downsides. The most obvious is introducing a trust model incompatible with
Bitcoin.

Custodians need to be fully trusted, either as a group, as in Liquid’s model, or individually,
following the Wrapped Tokens model. A malicious custodian can block withdrawals and in some
cases collude to abscond with funds. Custodians may also be compelled by governments, hackers,
or other forces to tamper with reserves, despite their good intentions.

Decentralized, Synthetic, Irredeemable
An alternative approach to a centralized peg is to create a decentralized synthetic asset.

One approach that’s been popular on Ethereum is Maker’s Dai stablecoin.

Dai is a token synthetically pegged to the US dollar. Ether is locked up in reserves, which, coupled
with a robust price feed and a number of stability mechanisms, allow for maintenance of the peg
under adverse conditions.

While Maker hasn’t launched a Bitcoin synthetic, the same network maintaining Dai’s peg could
easily be applied to maintain a similar Bitcoin product.

Trade-offs

The biggest benefit of a synthetic Bitcoin peg is its flexibility. A synthetic doesn’t need to follow the
rules governing the pegged asset, for better or worse.

For example, a synthetic might effectively "inflate" the supply of the underlying asset, which might
be desirable for some financial systems- and directly fly in the face of the purpose of a currency
aspiring to be hard money.

Despite the potential reuse of Maker’s network, launching such a synthetic has other risks. A
synthetic peg to a volatile asset like Bitcoin, backed by a volatile, under-diversified reserve entirely
of Ether, is a dangerous combination.

Design Goals
The goal of tBTC is the creation an ERC-20 token that maintains the most important property of
Bitcoin- its status as "hard money".

To maintain the "hard money" status of its backing BTC deposits, tBTC must remain

• Censorship and seizure resistant, across friendly and unfriendly jurisdictions

• Inflation-resistant. TBTC may only be minted after proof is provided of a backing BTC deposit.

• Leverage-resistant. The existence of tBTC shouldn’t allow cross-chain "printing" of additional
synthetic Bitcoin. We can’t stop someone from launching a synthetic, but artificially expanding
the Bitcoin supply is not a goal of the project.
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• Without middlemen, in the same sense as Bitcoin. The only rent extraction should be from the
minimal participation of signers required to secure the network, similar to miners on the
Bitcoin network.

• Redeemable. The ability to trade scrip for its backing deposit freely is what distinguishes a
backed currency from fiat money. The supply of tBTC is always backed by an equal number of
reserved BTC. This means for every token in circulation, 1 BTC has been removed from
circulation.

Together, these properties ensure a strong supply peg across chains, and the closest to "hard
money" status that a Bitcoin-pegged asset can achieve.

Notably, these properties don’t require an artificial price peg as is common in stable coin
projects — they instead require a supply peg across chains.

Developing Intuition: A simple single-signer
protocol
To understand how we might develop a protocol and token that satisfies those requirements, it’s
useful to consider a simple, under-specified variant that could theoretically do the job.

Imagine an off-chain actor, which we’ll call Signer; an Ethereum smart contract that implements
the ERC-20 interface, PeggedBitcoin; with ticker PBTC, and another contract with the permission to
mint and burn PBTC called PeggedBitcoinReserve.

Another off-chain actor, Depositor, wants to mint a token on the PeggedBitcoin contract. Depositor
requests the PeggedBitcoinReserve accept a 1 BTC deposit. PeggedBitcoinReserve waits for Signer to
acknowledge and return a new BTC address, as well as depositing 150% collateral of the deposit’s
value in ETH into the PeggedBitcoinReserve. Depositor deposits 1 BTC into the new BTC address, and
provides proof to PeggedBitcoinReserve - which in turn mints 1 PBTC, sending 0.99 to Depositor and
.01 to Signer for the convenience.

Withdrawals happen in reverse- any participant can send 1 PBTC to PeggedBitcoinReserve with a
Bitcoin address. Signer pays that Bitcoin address 1 BTC minus any Bitcoin transaction fees, and
provides proof of payment to PeggedBitcoinReserve, which burns the remaining 1 PBTC, maintaining
a 1:1 backing of PBTC. Signer is now free to withdraw the corresponding collateral from
PeggedBitcoinReserve.

Flaws
While this simple design is attractive, it’s skipped over some of the more difficult issues—efficient
Bitcoin proof of payment validation on the EVM and a reliable price feed implementation, for
example.

It’s also based on a deeply insecure custody solution.

First, the protocol relies on a single signer. If the value of deposits ever exceeds the value of the
collateral Signer has put down, there’s nothing stopping Signer from walking with the BTC. Signer
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can also decide or be coerced to censor particular withdrawals, removing any hope of censorship
or seizure resistance.

Second, the protocol relies on a single hot wallet. As the market cap of PBTC conceivably grows, the
risk due to hacking that wallet increases tremendously.

Finally, the protocol does nothing to localize failure. If there’s an issue with a single deposit or
withdrawal, it could impact the entire PeggedBitcoin supply, blocking all further deposits and
withdrawals.

System Architecture: Designing a robust
multi-wallet multi-signer protocol
The rest of this document is devoted to specifying a protocol that addresses those flaws, providing a
robust BTC-backed bearer asset on Ethereum.

At a high level, that means the protocol described must

• have a multi-wallet architecture

• with many geographically distributed signers

• that removes single points of failure

This protocol must also counter the secondary effects of these requirements and the details we
skipped in the single signer example, including multi-signer payment, a more complex bonding
system, an approach for detecting and dealing with undercollateralized signers, a Bitcoin proof
system, and robust handling of failures on both chains.

Some components necessary to this protocol are described outside this document and will be
assumed. In particular, we assume the existence of

• a well-distributed work token for signer selection

• a random beacon for signer selection

• an efficient distributed key generation protocol on the secp256k1 curve

• an efficient multi-party threshold ECDSA protocol on the secp256k1 curve

all of which are implemented by the Keep network. The importance of these is described in the
following sections.

The architecture is broken down into:

• Deposits and signer selection

• Bonding and price feeds

• Minting

• Signer fees

• Signing
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• Wallet failure

• Redemption

• Governance

Deposits

Overview

The tBTC system provides a mechanism for creating a token, TBTC, on a non-Bitcoin host chain (in
tBTC v1, the first host chain is Ethereum), that is 1-to-1 backed by bitcoin. Parties interested in
minting TBTC request that the system provide them with a Bitcoin wallet address. The system
selects a set of signers, which are tasked with generating a private/public keypair and furnishing it
to the system. The interested party then becomes a depositor by sending bitcoin to the wallet (the
amount of required bitcoin is discussed separately in the section on lots). The deposit cannot be
maintained for free, as deposits require signers to put up an ETH bond to guarantee good behavior
(see the section on deposit economics). To cover these costs, the deposit is paid for by signing fees
that cover a set term of deposit redemption exclusivity for the deposit owner, discussed separately
in the section on the deposit term.

Each of these steps is shown in the diagram below and discussed in subsequent sections.
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Bitcoin User tBTC System Host Chain
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Deposit request

The starting point for acquiring TBTC is generating a deposit request. This request is a transaction to
a smart contract on tBTC’s host chain, and signals that the sender requires a signing group backed
wallet, mediated by a deposit. Because signing groups have an inherent creation cost, deposit
requests charge a small payment in the host chain’s native token to cover the creation of the
signing group. This payment can be refunded if the signing group fails to generate and publish a
public key after a timeout.

Signer selection

Once the deposit request is received, the signing group is created by randomly selecting a set of
signers to back a Bitcoin wallet. This is a multi-part process described in the diagram below.[1]
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When a request comes in to create a signing group, the tBTC system requests a random seed from a
secure decentralized random beacon.[2] The resulting random seed is used to randomly select
signing group members from the eligible pool of signers. Finally, these signers coordinate a
distributed key generation protocol that results in a public ECDSA key for the group, which is used
to produce a wallet address that is then published to the host chain. This completes the signer
selection phase.

Signer bonding

Before the selected members of a signing group can perform distributed key generation, they MUST
put up a bond (the signer bond) in the native token of the host chain. This bond is used in a few
cases:

• To liquidate deposits in case they are in danger of undercollateralization.

• To punish a signing group if it signs an unauthorized piece of data once distributed key
generation is complete.

• To punish a signing group that fails to produce a signature for the system when requested.

• To ensure a depositor is refunded if the signing group fails to form.

In all but the last case, the seized bond is auctioned for TBTC to compensate the deposit owner the
amount of their deposit.

The signers must have enough bond available to back a deposit in order to be chosen for a signing
group, and the bond SHOULD be acquired by the deposit in the same transaction that chooses the
signers.

Bonding is described in more detail in its own section.

Distributed key generation

Some small notes about the distributed key generation a signing group undergoes. The distributed
key generation protocol should result in three properties:

1. The signing group as a whole should have an ECDSA public key, which will be shared on the host
chain and will correspond to the Bitcoin wallet owned by that signing group.

2. Each member of the signing group should have a threshold ECDSA secret key share[3], which can
be used to create a threshold ECDSA signature share for any transactions involving the signing
group’s wallet.

3. Each member of the signing group should be able to combine a threshold number of signature
shares from itself and other members of the group to produce a signed version of a given
transaction to be performed on behalf of the signing group.

Making a deposit

Once the tBTC system has a wallet address available for a given deposit request, the depositor can
broadcast a Bitcoin transaction sending BTC from a wallet they control to the wallet address for the
signing group. Once the transaction has been sufficiently confirmed[4] by the Bitcoin chain, the
depositor has to issue a transaction to the host chain proving that the deposit has been funded.
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The only link between the Bitcoin chain and the host chain is the tBTC system, which runs as a set
of smart contracts on the host chain. As such, the Bitcoin transaction issued by the depositor has to
be proven to the tBTC system before the tBTC system allows the depositor to behave as if they have
successfully deposited their BTC into the signer wallet. If the signing group fails to provide a public
key within a given timeout window (the signing group formation timeout), the depositor can notify
the deposit that this has occurred to receive their deposit payment back, taken out of the bonds that
the signers put up as part of the signing group selection process. If a deposit proof is not received
within a given timeout window (the deposit funding timeout), the signing group can notify the
deposit that this has occurred to disband the group and return the members' bonds.

Light Relays

To prove a deposit, the depositor submits proof that the transaction was included in a valid Bitcoin
block with sufficient subsequent accumulated work. The proof is verified by a simple payment
verification (SPV) smart contract on the host chain. A more complete overview of cross-chain SPV
systems and their security properties is included in the SPV appendix.

Light relays are a new variant of on-chain SPV developed for tBTC. They seek to take advantage of
the compact and efficient stateless SPV proofs while relaying enough information to provide each
stateless proof with some additional recency guarantee. We achieve this by taking advantage of the
difficulty adjustment feature of Bitcoin’s protocol. Bitcoin adjusts difficulty every 2016 blocks,
based on timestamps of the first and last block in that period (due to an off-by-one error in the
Satoshi client, one interblock period is excluded from the difficulty calculation). The change is
deterministic and within some tolerance may be set by the miner of the last block.

A light relay does not store every block header. Instead it stores only a slice of headers around the
difficulty adjustment event and records the difficulty for the current 2016-block epoch. This slice is
validated by its objective proof of work, as well as verifying that its first headers' difficulty matches
the current epoch difficulty, that the change occurs at an expected index in the slice, and that the
new difficulty conforms to Bitcoin’s adjustment algorithm. In other words, our light relay tracks
only Bitcoin’s current difficulty, and no other information about its state.

Knowing the current difficulty gives basic stateless SPV proofs additional, stronger recency
assurances. Any newly-generated stateless SPV must include that difficulty in its header chain, and
that difficulty is not known to any party in advance. Miners with an n-fraction (as usual, n >= 2 due
to the 51% assumption) of the hashrate have a 1/n chance of being allowed to set the difficulty, and
thus have a 1/n chance of being able to successfully predict it 2 weeks in advance (by generating
fake proofs, and then setting the difficulty such that they appear valid). Generalized, this is a 1/nt

chance of successfully predicting difficulty t adjustment periods (2t weeks) in advance. Therefore
the use of the light relay provides stronger security properties to stateless SPV proofs when used as
an additional validation step, as even entities with significant mining resources have a greatly
reduced chance of creating fake proofs.

Lots

When creating a deposit, the deposit’s lot size must be specified. The tBTC system supports a
governable set of available lot sizes (see the section on Governance for more), guaranteeing only
that at least 1 BTC lot sizes will be available. v1 will launch with six available lot sizes: 0.002 BTC,
0.01 BTC, 0.1 BTC, 0.2 BTC, 0.5 BTC, and 1 BTC. Deposit requesters may only create deposits in one of
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those lot sizes, and the lot sizes only allow minting their corresponding amount of TBTC. If a
depositor wants to deposit more than the maximum lot size the system supports, they will need to
create multiple deposit requests and fund multiple deposits.

For simplicity’s sake, the rest of this spec is written with the assumption that deposits of 1 BTC are
being opened; however, anything dependent on lot size (such as signing fees) will be defined as a
value proportional to the lot size.

Limited lot sizes with a max cap allow each deposit to be backed by a different signing group, both
simplifying the bonding of signing groups and improving the resilience of the system to signing
group failure, malicious or not.

Mistakes making a deposit

The system is designed to function with a few predefined lot sizes for all deposits, which are given
as system parameter. Depositors should send the exact lot amount of BTC in the funding
transaction, or expect loss of funds. Since it is not possible for the system to force users into
sending any specific amount, ideally the system would gracefully handle overpayment and
underpayment. The primary impact of overpayment and underpayment is on the specific deposit’s
collateralization ratio. The system treats overpayment and underpayment as faulty depositor
behavior, and passes on the associated costs to the depositor.

Overpayment

Allowing overpayment on a given deposit would result in under-bonded signers. When
overfunding occurs, the system accepts the funding proof, but mints TBTC according to the regular
lot size.

In an efficient market, a deposit that has been overfunded in this way should be immediately
redeemed by the depositor to regain the missing value. If the depositor instead chooses to mint
TBTC off of it and thus unlock it (see the section on minting), the deposit should be immediately
redeemed by another actor, as the redeemer should expect to take the overfunded amount as
arbitrage.

A user providing a funding proof for 1.6 BTC for a deposit with lot size of 1 BTC mints only 1.0
TBTC. Any user that burns 1.0 TBTC is then able to claim the 1.6 BTC deposit and redeem its
contained UTXO, making a profit of roughly 0.6 BTC.

Underpayment

Allowing underpayment on a given deposit, in contrast, would result in over-bonded signers. To
prevent this, the system will not accept funding proofs of less than the specific deposit’s lot size.
This implies that the a user that sends less than the deposit lot size in the funding transaction does
not receive any TBTC, and forfeits the BTC locked in the funding transactions to the signing group.
The signing group can, after the deposit funding timeout, notify the deposit that it has not been
funded, get its funds back, and the signing group can then unlock and evenly split the funds in the
transaction after the deposit is resolved on-chain.
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Multiple UTXOs

A faulty depositor may also send more than one UTXO to the signer group address, whether due to
human or software error. Unfortunately, returning the funds to the depositor would impose
significant on-chain complexity and gas fees, as each UTXO would need to be proven via SPV, and a
signature on it explicitly authorized. In addition, we would have to develop mechanisms to
economically compel signers to sign each transaction despite the fact that the total value of the
UTXOs is not known. As such, the system accepts only the first UTXO greater than the deposit lot
size. All other BTC sent to the signing group is forfeit. Therefore it is imperative that depositors send
only a single UTXO of an appropriate value.

As a particularly damaging example, consider a naive human depositor. If they mistakenly
send half the lot size in one transaction and half in another, both UTXOs would be forfeit. This
represents a serious pitfall for depositors that must be carefully addressed by the user
interface, since significant loss of funds can occur.

Requesting a funder abort

The system includes a small escape hatch for underfunded or multi-UTXO scenarios: after the
deposit is marked as having timed out in funding, the depositor can request a funder abort. This
request includes a Bitcoin address to send the underfunded UTXO back to the depositor. This escape
hatch relies entirely on signer honesty, and the system cannot provide an economic guarantee to
the depositor that they will get their bitcoin back.

Deposit economics

Signers aren’t altruists—they are paid for the service they provide.

Signer fees should always be paid or escrowed up front. To achieve this, signer fees must be
guaranteed by minting, and deposits must have predictable lifetimes.

A detailed treatment of signer fees can be found in its own section.

Terms

Fixed-term deposits mean signer fees can easily be calculated per deposit. A standard term of 6
months means depositors can budget for fees, and signers will know how long their bonds will be
inaccessible. To incentivize redemption at term, the system is structured such that deposits can only
be redeemed by the owner of the deposit during the term, but anyone may redeem deposits once
they reach term. Additionally, at-term redemptions still charge their signing fees from the deposit
owner, unless fees have been escrowed by the vending machine.

Depositors that don’t need future access to their deposit might prefer to pass the costs of the system
to eventual redeemers and/or want denomination beyond the BTC lot size or fungibility. These
depositors can opt to receive a non-fungible Fee Rebate Token which pays a fee rebate at the time of
a deposit’s (pre-term) redemption by another user. The rebate mechanism is explained further in
the discussion around minting.
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At the end of the deposit term, the deposit can be redeemed by anyone including the signers
themselves, with signer fees owed by the deposit owner. This mechanism is discussed in more
detail in the section on redemption.

Bonding
Because signers are able to collude to censor withdrawals or abscond with funds, a bond is
required per deposit from each backing signer.

Unlike the staked work tokens used to choose signers, signer bonds need to be a liquid asset with a
large market cap. This restriction increases the cost of market-based attacks, where the price of
bonded collateral can be pushed up or down by market manipulation.

Bonded signers offer depositors recourse in the case of colluding signers interfering with operation.
A signing group that doesn’t provide a requested redemption signature within a timeout (the
redemption signature timeout) forfeits their bond. Similarly, a signing group that provably signs
unauthorized material forfeits their bond, and additionally risks their work token stake.

Acceptable collateral

Two tokens present themselves as obvious choices for signing bond collateral—TBTC and the
underlying work token. During the bootstrap phase of the network, neither is an appropriate
candidate due to low liquidity.

Since signer bonds need to be denominated in a widely traded asset to avoid market manipulation,
the next most obvious pick for bonding is the host chain’s native token. For tBTC v1, that means
ETH. As the ecosystem matures, other bond collateral options might become feasible at the expense
of a more complex implementation.

Measuring security

Clearly, security concerns require signing bonds that are proportional to the lot size of a deposit. To
maintain a negative expected value from signers colluding, the amount forfeited by misbehaving
signers must be strictly greater than the amount they have to gain. Assuming a lot size of 1 BTC,
constant exchange rate between BTC and the bonded asset, and a M-of-N group of signers backing a
deposit, the minimum collateral for each signer is (1 BTC)/M, denominated in the asset being
bonded (ETH in the base case).

Consider a 1 BTC deposit backed by a 3-of-5 group of signers. In the worst case, 3 of the signers
can be malicious and try to steal the deposit, which would net them each 1/3 BTC. As a result,
all 5 signers must bond 0.33 BTC each, denominated in ETH.

NOTE

For tBTC v1, attributability limitations in the signing protocol mean the signer group
is 3-of-3. As a result, the required per-signer bond will be 50% of the lot size per
signer, for a total 150% bond (see the following section on ETH price drop relative to
BTC). With attributability in later versions, bonds will be able to be decreased by
increasing both signing group size and threshold.
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Pricing currency fluctuations

The above assumes a constant exchange rate between BTC and ETH, but in truth the two currencies
fluctuate relative to each other, sometimes wildly.

ETH price drop relative to BTC

If the value of ETH drops precipitously relative to BTC, then the dollar value of the ETH bonded by
the signers can be less than the dollar value of the BTC deposit they have backed, meaning signers
have positive expected value if they try to steal the BTC in the deposit.

In order to avoid that, we require that the bonds are overcollateralized. For each ETH signers
collateralize, they must put up an additional 50%, for a total of 150% collateralization rate.

Without overcollateralization: Let 1 BTC be worth $10000, and 1 ETH be worth $200. Signers
have to put up 50 ETH to back a deposit. Due to market conditions, ETH drops 25% to $150,
while BTC maintains its value. The 50 ETH is worth $7500, meaning the signers can make a
$2500 profit by stealing the deposit.

With overcollateralization: Let 1 BTC be worth $10,000, and 1 ETH be worth $200. Signers
have to put up 75 ETH (150% of 50) to back a deposit. Due to market conditions, ETH drops 25%
to $150, while BTC maintains its value. The 75 ETH is worth $11250, which is above the dollar
value of BTC meaning the signers should maintain honest behavior since they have more to
lose.

In general, total overcollateralization of 150% (3/2 * 100%) keeps signer incentives aligned with the
well-being of the system up to a 33% drop ((1 - 2/3) * 100%) in price of the bonded asset against
the deposit’s asset. Increasing this percentage can increase the robustness of the system, at the
expense of opportunity cost to the signers which should be compensated via fees.

If the value of ETH crosses a security threshold, open deposits will enter pre-liquidation, followed
by liquidation.

BTC price drop relative to ETH

Since signer fees are denominated per BTC in custody (with overcollateralization factored in), a BTC
value drop against the bonded asset translates in lower fees for signers. Note that this does not
create any issue for TBTC reserves, but it makes the system less attractive to signers earning fees on
their assets.

Signers SHOULD buy TBTC from the markets in anticipation of such overly overcollateralized
deposits and they SHOULD use it to redeem these positions where possible, thus reclaiming their
ETH liquidity which can be used to back other deposits. An alternative would be to provide signers
with the ability to safely rebalance their bonds back to 150%; however, that introduces
implementation complexities and as a result is not the preferred solution for the initial deployment
of the mechanism.
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Let 1 BTC be worth $10,000, and 1 ETH be worth $200. Signers have to put up 75 ETH to back a
1 BTC deposit. Signers are expected to make a signer fee of 5 basis points on a $10,000 deposit
for $15,000 of collateral (150% of $10,000), and in return they give up the possibility of putting
75 ETH to different use. Assume that alternative use would return 5 basis points, denominated
in ETH. Due to market conditions, ETH soars 25% to $250, while BTC maintains its value. The
signers still get 5 basis points in TBTC, however the 5 basis points they could have been
earning in ETH is now more valuable. If the deposit is unlocked and a signer has reasonable
expectation that the overcollateralization will persist, a signer should redeem the deposit by
paying 1.0005 TBTC, reclaiming 1 BTC and unlocking the 75 ETH which was locked by all
signers. All significantly overcollateralized signers now have liquid ETH which they can use to
back another deposit to mint new TBTC, now with a lower collateral requirement in ETH, or to
put to different uses.

A resilient price feed

Unlike popular synthetic stablecoin schemes, the tBTC system design makes no effort to stabilize the
value of TBTC relative to BTC: TBTC will be priced by the market. Instead, the goal is to ensure that
the TBTC supply is strictly less than its backing BTC reserves.

For this reason, the only price relationship the system needs to understand is between the signing
bond collateral and BTC.

For tBTC v1, that means the price of ETH relative to BTC. Due to only needing prices for a single pair
of assets, tBTC will initially use a simple price feed.

Undercollateralization

Pre-liquidation: a courtesy call

At the first threshold of 125%, a deposit enters pre-liquidation, also referred to as “courtesy call”. In
this state, a deposit can be redeemed by anyone, even if the deposit is locked (see the sections on
redemption and minting for more). Pre-liquidation indicates that the signers should close the
deposit or face forced liquidation after a pre-liquidation period. If the deposit is not closed within 6
hours, or if the deposit collateral falls below 110% collateralization, liquidation will follow. This
gives each signer an incentive to close the position before it becomes severely undercollateralized.
Alternatively, if the ETHBTC ratio recovers such that the deposit becomes at least 125%
collateralized during the 6 hours, the deposit is safe and is moved away from the pre-liquidation
state.

In future versions of the system, more complex pre-liquidation mechanisms could be introduced.
For the initial version it seems prudent to choose a simple mechanism with large penalties for
ongoing undercollateralization. In addition, by incentivizing redemption of undercollateralized or
significantly overcollateralized positions, signers are protected from being long ETH for long
periods of time.
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Liquidation

Forced liquidation should be rare, as rational signers will redeem deposits before liquidation
becomes necessary. However, the possibility of extreme punishment via liquidation is necessary to
prevent dishonest behavior from signers. Liquidation may occur because signers didn’t produce a
valid signature in response to a redemption request, because the value of the signing bond dropped
below the liquidation threshold, because they did not respond to the courtesy call, or because the
signers produced a fraudulent signature[5].

The primary goal of the liquidation process is to make the deposit owner whole in the face of
incorrect signer behavior or external dynamics that compromise deposit safety.[6] The secondary
goal is to punish signers maximally for incorrect behavior, when such behavior can be proven.

The most valuable asset held by the system is the signer bond. Therefore, the liquidation process
seizes the signer bond and attempts to use the bonded value to purchase TBTC and compensate the
deposit owner. Any signer bond left over after the deposit owner is compensated is distributed to
the account responsible for reporting the misbehavior (for fraud) or between the signers and the
account that triggered liquidation (for collateralization issues).

To compensate the deposit owner, the contract starts a falling-price auction with the seized signer
bond. It offers 66.6667% of the signer bond in exchange for the outstanding TBTC amount. This
amount assumes that the deposit is properly collateralized at 150%, which guards against price feed
malfunctions that could cause a properly-collateralized deposit to otherwise be taken for an
incorrectly high ETH value. The amount of bond on sale increases over time until someone chooses
to purchase it, or the auction reaches 100% of the bond. The auction will remain open until a buyer
is found.

TBTC received during this process is sent to the deposit owner; if the owner is the vending machine,
the vending machine MUST burn the TBTC to maintain the supply peg. If any bond value is left after
liquidation, one of two things occurs:

• In case of liquidation due to undercollateralization or abort, the remaining bond value is split
50-50 between the account which triggered the liquidation and the signers.

• In case of liquidation due to fraud, the remaining bond value goes to the account which
triggered the liquidation by proving fraud.

At the end of liquidation, unresponsive or misbehaving signers have control of the deposited BTC.
What those signers do with the BTC outside the tBTC system is for them to decide—it might be split
up, stolen by a signing majority, or lost permanently.

NOTE

If a Fee Rebate Token (FRT) has been given out to mint TBTC for a deposit that is
liquidated (see the Minting section), the FRT owner is not refunded during
liquidation. The fees that were escrowed in exchange for the FRT are instead used
to compensate the signers, and the FRT is no longer eligible for compensation.

1. Signers guard a deposit of 1 BTC, backed by 75 ETH at 0.02 BTC/ETH (1.5 BTC in ETH, 150%
collateralization ratio).

2. ETH price drops to 0.01333 BTC/ETH. 75 ETH now only collateralizes 100% of the Deposit (1
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BTC / 75 ETH)

3. Liquidation is triggered and the 75 ETH is seized to buy back TBTC.

4. The deposit must use the 75 ETH to purchase 1 TBTC. In an attempt to get a discount, it
auctions 66.6667% of its ETH reserves.

5. An arbitrageur burns 1 TBTC at 90% of the auction and obtains 67.5 ETH. The liquidation of
the deposit is now over. The arbitrageur might do this because the price has recovered
during the auction, because they intend to use the ETH to arbitrarge against a higher price
later or with a different asset, or because they are arbitraging against an earlier,
advantageous TBTC price at which they acquired the requisite TBTC.

6. Half of the remaining 7.5 ETH is distributed to the signers (if they had committed fraud this
would be 0), and the remainder is given to the account which started the liquidation
process on the Ethereum smart contract. At this point, the deposit is marked as closed. Note
that the FRT holder is not refunded during liquidation..

7. Optionally, the N signers coordinate and agree on how they will distribute the 1 BTC
deposit.

Price Feed
The price feed is an integral part of the system, ensuring sufficient collateral backs all tBTC signers.
For tBTC v1, the feed will be built on a ETHBTC Medianizer from MakerDAO, currently operated by
MakerDAO.

The minimal price feed design is specified completely by the interface below:

interface PriceFeed {
    function getPrice() external view returns (uint256);
    function updatePrice(uint256 price) public;
}

It is principally used for calculating the value of Bitcoin lot deposits, priced in Ether. In the
Medianizer model, the price is provided by an external entity, so the updatePrice method is not
included.

Price encoding

A bitcoin has 8 decimal places, the smallest unit being a satoshi, meaning 100 000 000 satoshis = 1
bitcoin. An ether by contrast, has 18 decimal places, the smallest unit being a wei, meaning 1 000
000 000 000 000 000 wei = 1 ether.

To express the price of bitcoin relative to ether, we must use a ratio of the number of wei to a
satoshi. A simple design is to use x wei : 1 satoshi. Hence, for a call to getPrice when 32.32 ETH : 1
BTC (Jun 2019), the value 323 200 000 000 wei is returned.

However, if 1 wei is worth more than 1 sat, then the price can no longer be accurately encoded.
This scenario of a 'flippening', when 1 ether becomes worth 10,000,000,000x as much as 1 bitcoin,
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we find unlikely in the very short-term. Rather than prematurely optimize, incorporating a 2
integer ratio of x wei to y satoshi and changing the call semantics, we leave this as a future exercise
for governance.

NOTE

The Medianizer in use for tBTC v1 is what Maker calls an ETHBTC feed, meaning it
returns the price of 1 ETH in BTC to a precision of 18 decimals. There is no name for
the 18th decimal of BTC, since the smallest named denomination of a BTC is 10-8, the
satoshi, so we refer to it henceforth as a "weitoshi". To get the ratio of x wei : 1
satoshi, tBTC must convert the ETHBTC value (1 ETH in weitoshi) to the number of
wei in 1 sat; it does this by dividing 1028 by the Medianizer value.

Future design

The price feed is integral to tBTC’s security and in the future, will be principally governed by the
tBTC ecosystem. The first upgrades will focus on incorporating a novel price feed mechanism based
on reverse auction challenges that has been dubbed the "priceless feed".

Minting

Overview

The process of minting TBTC is distinct from the process of depositing Bitcoin.

By splitting minting into two phases—a zero-confirmation deposit creation yielding a non-fungible
token, and an additional proof enabling trade-in of the non-fungible token for fungible TBTC—we
can balance strong security against reorgs with a better user experience and more flexible use
cases.

A simplified view of the deposit creation, minting, and redemption flows is in this diagram:
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tBTC System Depositor Deposit Vending Machine Redeemer

Request deposit creation

Create deposit

Mint and assign deposit TDT

Submit funding proof

Move state to Qualified

Reassign TDT ownership to Vending Machine

Mint and transfer TBTC: lot size - signer fee

Mint and escrow TBTC: signer fee

Mint and assign Fee Rebate Token

Send `lot size` TBTC and TDT id

Reassign TDT ownership to redeemer

Request redemption, send signer fee

Produce redemption signature

Prove redemption transaction on BTC

Move state to Redeemed, release signer bonds

tBTC System Depositor Deposit Vending Machine Redeemer
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Note that the above diagram skips a few additional possibilities explained below in this spec,
including how pre- vs at-term deposits behave differently, liquidation-related changes, as well as
how a depositor might keep their TDT without minting TBTC.

Minting the non-fungible tBTC Deposit Token

After a deposit has been requested and a signing group formed, a depositor immediately receives a
non-fungible token unique to the deposit called the tBTC Deposit Token, or TDT, granting them
ownership of the deposit. This ownership comes with the exclusive right to redeem the deposit
from the moment it is funded until the deposit term is reached, unless there is an
undecollateralization issue that transitions the deposit into its "courtesy call" state.

Once the deposit is fully qualified by submitting sufficient proof of the funding Bitcoin transaction,
the holder of the TDT can request redemption, and, after paying any outstanding signing fees, the
holder is guaranteed the same UTXO backing the deposit. The holder of the TDT is also guaranteed
compensation in TBTC via the signing group’s bonded collateral in case of fraud or collateralization
issues (see liquidation), and compensation in TBTC (minus signer fees) if the deposit is redeemed by
another account after it reaches term (see the section on at-term redemption) or if the deposit is
courtesy called.

Implications

There are a few non-obvious implications to a UTXO-specific non-fungible token.

1. Any attacks against the deposit backing a TDT should only impact the token holder, rather than
the entire supply-pegged currency. Attacks against a particular deposit might include Bitcoin
reorgs / double spends, DoS attacks, malicious signers, or deposit undercollateralization.

2. Any recipient of a TDT will need to evaluate the risk of the token themselves. Different tokens
might represent different likelihoods of reorgs. Deposit owners are free to transfer their TDT,
trading it or perhaps using it as collateral elsewhere, caveat emptor.

3. TDTs are an ideal target for secret fixed-size "notes" or other financial privacy improvements on
the host chain.

4. This construction allows delegation of accumulated work SPV proofs to third parties. With this
functionality, depositors wouldn’t necessarily need to monitor the Bitcoin blockchain.

Minting fungible TBTC

Once a deposit has accumulated enough work, it is eligible to be traded for fungible TBTC. The
contract managing this is called the "vending machine".

The TBTC vending machine

The TBTC vending machine is a contract on the host chain that is responsible for minting TBTC.

Any TDT representing a qualified deposit can be exchanged. Qualified deposits are determined by
the accumulated work of their proofs. In tBTC v1, deposits are qualified by a fixed work
requirement proven via an SPV proof, set at 6 blocks of accumulated work.
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A TDT representing a qualified deposit is also eligible for minting fungible TBTC. Minting TBTC is
optional; depositors can stick with their TDTs, which will be valid for the lifetime of a maintained
deposit. Note that if a holder of the TDT wants to make a transaction with a different value than the
lot size, they must mint TBTC, since the tBTC Deposit Token itself is non fungible.

The holder of a qualified TDT may exchange that TDT for newly minted TBTC equivalent to the
deposit’s lot size (for example, 1 TBTC), less the requisite signing fee (for example, 0.005 TBTC). To
reflect the reduced guarantee of the TDT holder’s interest in redeeming the specific deposit, the
signing fee is sent to the deposit to be held in escrow at the time of TBTC minting.

By exchanging and escrowing, the TDT holder waives their right to exclusive redemption. As such,
they also receive a non-fungible Fee Rebate Token, or FRT. This token grants the right to a fee rebate
if and when the pre-term deposit is redeemed by another party. In the rare case that a TDT is used
to mint TBTC, retrieved from the vending machine, and resubmitted to the vending machine prior
to its term expiring, signing fees are only escrowed the first time a TDT is traded to the vending
machine. Since signing fees are not escrowed the second time the TDT is traded to the vending
machine, no FRT is issued at that time either; instead, the FRT issued the first time the TDT was
traded to the vending machine remains valid.

Trading TBTC for tBTC Deposit Tokens

Any TDT held by the vending machine can be obtained for its lot size in TBTC (in the above
instance, the deposit could be obtained for 1 TBTC). The vending machine MUST burn any TBTC it
receives, in any case where it can receive TBTC.

This mechanic has the effect of allowing "unlocked" deposits to be "locked" in advance for later
redemption. In fact, TBTC minting is simply a special case of locking: a TDT used to mint TBTC is
locked to the vending machine, which provides a straightforward way to transfer it to another
account for the cost of the lot size in TBTC.

Burning all received TBTC allows for maintaining the supply peg not only when deposit ownership
is transferred away from the vending machine, but also when the deposits that are still owned by
the vending machine are liquidated or redeemed at term, since in these cases deposit owner
compensation goes to the vending machine, which burns that compensation immediately.

Signer Fees
Signers put their own funds at risk to assure depositors there will be no foul play. The bonds they
put down are capital that could otherwise be productive, and need to earn a return relative to the
risk to remain competitive with other opportunities.

Paying for security

There are a number of pricing models that could cover the opportunity cost of signers' bonds.

A pricing floor can be derived from a related pricing model in the cryptocurrency space: today’s
centralized cryptocurrency custodians charge 50 to 75 basis points (between 0.5-0.75%) on assets
under custody (AUC) per year. For each year that a centralized custodian protects a bitcoin deposit,
that’s as much as 0.75% lost to the costs of custody.
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A decentralized model should eventually allow a lower effective fee on custody by introducing
more competition to the space. There is a caveat, however—a decentralized approach to
custodianship makes legal recourse more difficult, requiring additional bonded collateral to ensure
recompense in case of failure.

Applying this pricing model to tBTC’s bonding, it’s clear that a signer would need to make a similar
return at a minimum on the total capital it’s protecting.

Fee parameterization

Terminology

Deposit

A non-fungible smart contract construct to which a signing group is assigned. It coordinates the
creation and redemption of LotSize TBTC.

LotSize

The exact value of a deposit denominated in BTC.

OvercollateralizationFactor

The additional amount which must be deposited as collateral by the signer, expressed as a
percentage of the lot size.

BondValue

The amount a signer must lock in a smart contract as collateral to mint TBTC. Initially this will be
denominated in ETH. The required deposit collateral across all signers can be expressed as
OverCollateralizationFactor * LotSize * (ETHBTC conversion rate).

N

The number of signers authorized to sign on a `Deposit’s withdrawal request.

M

The minimum number of signers required to sign the authorization of a deposit’s withdrawal
request.

Description

It is assumed that each signer contributes equally to the collateralization of a deposit.

The capital cost per signer is BondValue / N. Using LotSize = 1 BTC and OverCollateralizationFactor
= 150%, that is 1.5 BTC / N.

An initial parameterization of the system might use 3 signers per lot. In addition, due to the lack of
attributability in the aggregate signature mechanism used, we pick M = N. This requires a 50% BTC
value in capital cost for each signer per 1 TBTC minted.
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Signing
All of the aforementioned mechanisms require that there is a M-of-N multisignature wallet
guarding each Deposit on Bitcoin.

Bitcoin’s consensus rules restrict script size to 520 bytes (10,000 bytes for Segwit outputs), limiting
the maximum size of multisignature scripts to about 80 participants (OP_CHECKMULTISIG is
limited to 20 public keys, but this can be bypassed by using OP_CHECKSIG ADD and <threshold>
OP_GREATERTHAN as shown by Nomic Labs). Future proposals such as MAST would allow
implementing larger multisigs, however the activation of new features on Bitcoin has historically
been a procedure with unclear timelines.

Finally, large multisignature wallets in Ethereum and Bitcoin both have increasing verification
costs as the number of participants increases. Building multisigs on Ethereum is particularly hard.
By utilizing aggregate signatures with public key aggregation, we can remove all of the above
complexities and replace them by a simple single signature verification.

Intuitively, an aggregate public key is generated from all multisignature participants who
communicate via an out of band protocol, a process also known as Distributed Key Generation
(DKG). Each participant signs the intended message with their private key and contributes a "share"
of the final aggregate signature. Assuming ECDSA, the aggregate signature can then be verified
against the aggregate public key with an OP_CHECKSIGVERIFY on Bitcoin, or an ECRECOVER
operation on Ethereum. This process is simple and inexpensive, and avoids the path of
implementing complex multisignature verification logic which can be upgraded for different M-of-
N configurations. If another configuration is required, the script or the smart contract only needs to
be configured to use a new aggregate public key after re-executing the DKG.

Threshold ECDSA

For a private key x, a message M, a hash function H, and a uniformly chosen k, an ECDSA signature is
the pair (r, s), where s = k (m + xr), r = R_x, R = g(k-1) and m = H(m). Intuitively, this signature
can be converted to a threshold signature if k and x are calculated via secret sharing between t of n
protocol participants. Gennaro and Goldfeder’s paper describes an efficient mechanism for
performing this procedure. Note that a similar mechanism was proposed by Lindell at al in the
same year.

Informally, the participants perform the following actions to sign a message:

1. Produce an additive share of k * x, where each participant i holds k_i and x_i.

2. Efficiently calculate R = g^(1/k) using Bar-Ilan and Beaver’s inversion trick, without any
participant i revealing k_i, and set r = R_x.

3. Each participant calculates their share of the signature: s_i = m * k_i + r * k_i * x_i.

4. The threshold signature is the sum of all signatures s_i.

A more in-depth description of the protocol can be found in Section 4.1 and 4.2 of the paper.
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Improved Fault Attribution

Currently, when Signers misbehave, all of their security bonds are seized and burned. If the system
is parameterized to use M-of-N multisigs to back deposits, this means that if M parties misbehaved,
the bonds of all N parties would be slashed. This is a griefing vector which we ideally would like to
avoid. Accountable-subgroup multisignatures (described in Section 4 of the related paper) allow
distinguishing a signature made by a subgroup S in a M-of-N multisignature from another subgroup
S'. This can be leveraged to penalize only the M misbehaving signers, removing the risk of punishing
honest signers.

The threshold-ECDSA protocol described in the previous section does not support fault attribution
to subgroups of signers. We will deploy tBTC without that feature, and enable it in future protocol
upgrades.

Future Signature Schemes

In this section we explore other aggregate signature schemes we may use in the future. The
described techniques are secure in the plain public key model, meaning that users do not need to
prove ownership of their secret key, making them attractive for usage in blockchains. We briefly
describe MuSig and BLS signatures.

MuSig

Note: This section is taken from the last section of the official MuSig blogpost by Blockstream

1. Let H be a cryptographic hash function

2. Call L = H(X_1,X_2,…)

3. Call X the sum of all H(L,X_i) * X_i

4. Each signer chooses a random nonce r_i, and shares R_i = r_i * G with the other signers

5. Call R the sum of the R_i points

6. Each signer computes s_i = r_i + H(X,R,m) * H(L,X_i) * x_i

7. The final signature is (R,s), where s is the sum of the s_i values

8. Verification must satisfy: sG = R + H(X,R,m) * X

Contrary to earlier constructions, this signature verification algorithm is secure against rogue key
attacks because X is defined as a weighted sum of the signers' public keys, where the weighting
factor depends on the hash of all participating public keys.

Pairing based multisignatures

Building on the work from MuSig and BLS signatures, Boneh, Drijvers and Neven introduce an
efficient variant of previous BLS signature constructions which requires only 2 pairing operations
for verification and is also secure against rogue key attacks.

This multisignature is shorter than MuSig since it is only 1 group element instead of 2. MuSig also
requires an additional round of communication to generate the nonce R, which is not present in
BLS. All signers can send their signatures to a third party who will aggregate them, removing the
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need for further interaction and for all parties to be online at the same time.

Note: This section is taken from the Section 1 of the official related post by Dan Boneh et al

1. Call e: G_0 x G_1 → G_T a bilinear non-degenerate pairing that’s efficient o compute, g_0 and g_1
generators of G_0 and G_1 respectively.

2. Call sk the user’s secret key, and g_1^{sk} their public key.

3. Call H_0 a cryptographic hash function from the message space to G_0

4. Call H_1 a cryptographic hash function from G_1^n to R^n

5. A signature on m is s_i = Η_0(m)^sk_i

6. To aggregate N signatures for the same message from public keys (pk_1, …, pk_n):

1. Compute: (t_1, …, t_n) = H_1(pk_1, …, pk_n)

2. Aggregated signature: s = s_1^t_1 * … * s_n^t_n

7. To verify the aggregated signature against the same public keys:

1. Compute: (t_1, …, t_n) = H_1(pk_1, …, pk_n)

2. Compute the aggregate public key: pk = pk_1 ^ t_1 * … * pk_n ^ t_n (independent of the
message being signed))

3. Verify the signature: e(g_1, s) = e(pk, H_0(m)) (requires 2 pairings since the same message
is being signed):

Handling Failure

Aborts / Liveness

The system requires that critical actions like funding and redemption occur within a fixed time
after request. Failure to do so is treated as an "abort." Where fraud indicates proof positive of
forbidden behavior, an abort typically represents a liveness failure from some participant. As such,
while aborts are still punished, and may still result in liquidation, they are not punished as severely
as fraud. For example, should the signers fail to produce a redemption signature in a timely
manner, their bonds are liquidated to protect the supply peg, but any remainder is returned to
them once the liquidation initiator is rewarded.

Fraud

The system recognizes one type of fraud proof, ECDSA fraud proofs, in which the signing group
produces a signature on a message which was not explicitly requested. When fraud is detected, the
system penalizes the signers by seizing their bonds and starting the liquidation process.

ECDSA Fraud Proofs

The signers collectively control an ECDSA keypair. By cooperating, they can produce signatures
under the public key. Signers are charged with producing certain signatures (e.g. on a redemption
transaction during the redemption process). Any valid signature under the signers' public key, but
not specifically requested by the system is considered fraud.
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An ECDSA fraud proof is simply a signature under the signers' public key, the signed message
digest, and the preimage of that digest. From there we perform regular ECDSA verification. If the
preimage matches the digest and the signature on the digest is valid but the digest was not
explicitly requested by the system, then we can be sure that the signer set is no longer reliable. It is
worth noting here, that verification of the preimage-digest relationship may not be skipped. Given
any public key, it is possible to construct a signature under that public key and select a digest that
matches it. Which is to say, anyone can produce an apparently valid signature on any unknown
message. Only direct verification of the preimage’s existence (via checking its relationship to the
signed digest) prevents this attack as the attacker would have to invert the hash function to forge
this relationship.

Notionally, the system can verify any signature the signers produce. However, the capabilities of
the host chain set practical limitations. For instance, on Ethereum, only certain digest functions are
available, so we cannot verify signatures on digests produced by unsupported hash functions. As a
practical example, this precludes verification of Decred signatures, which use blake256. Signers in
an Ethereum-hosted system can produce signatures on Decred transactions with no possibility of
punishment.

All host chains impose costs on argument size, therefore cost of verification scales with the length
of the preimage. This means that it may not be economically feasible to verify signatures on very
long preimages, or that attempting to do so will exceed resource-use limitations (e.g. Ethereum’s
block gas limit). Fortunately, Bitcoin’s signature hash algorithm uses double-sha256, which makes
the preimage of a signature the result of the first sha256. This means that the preimage to the
signed digest is always 32 bytes, meaning verification costs never scale with transaction size, and
even very large transactions cannot evade ECDSA fraud verification.

Redemption

Overview

Deposits represent real Bitcoin unspent transaction outputs ("UTXOs") and are redeemable for the
BTC held there. The tBTC redemption system aims to provide access to those BTC via a publicly
verifiable process.

So long as a deposit is maintained in good standing, the holder of the non-fungible tBTC Deposit
Token may request redemption, relinquishing their NFT and paying any outstanding signer fees
associated with the deposit.

At this point, the redemption process may not be cancelled.

Once redemption has been requested, the signers must produce a valid Bitcoin signature sending
the underlying BTC to the requested address. After a signature has been published, any actor may
build and submit a redemption transaction to the Bitcoin blockchain using that signature.

Deposit Terms and Redemption

As noted in the section on deposit terms, a deposit has a fixed term. After that term expires, the
deposit becomes unlocked from the deposit owner, so that it can be redeemed by any account
(including, notably, the deposit owner account). At this point, redemption costs exactly the lot size
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of the deposit, with no signer fee due. If the deposit has had the signer fee escrowed during TBTC
minting, the signer fee is paid from escrow and the deposit owner is sent the full lot size in TBTC. If
the deposit has no escrowed fee, the owner is sent the TBTC used to redeem, less the signer fee,
which is distributed to the signers.

NOTE

For the deposit owner, at term, redemption is free if there are escrowed fees, or
costs the signer fee if there are not. This is subtly different from pre-term
redemption, where the deposit owner must pay the signer fee even if there are
escrowed fees. The additional difference is sent to the Fee Rebate Token holder, who
is rebated the signer fee during pre-term redemptions, but not during at-term
redemptions.

Redemption Requests

A redemption request can be submitted in a few cases:

• If the deposit is in good standing (has not already been redeemed, has not been accused of
fraud, and has not entered signer liquidation), pre-term, and the requester holds the
corresponding tBTC Deposit Token.

• If the deposit is in good standing and is at or past term, irrespective of whether the requester
holds the corresponding tBTC Deposit Token.

• If the deposit has entered courtesy call, an undercollateralization state designed to allow closing
deposits before they become dangerously undercollateralized, irrespective of whether the
requester holds the corresponding tBTC Deposit Token.

To request redemption, a requester makes a redemption request transaction to the smart contract
on the host chain. The redemption request includes the following:

1. A Bitcoin transaction fee amount.

◦ must be >=2000 satoshi (~20 satoshi/vbyte)

2. A standard output script for BTC delivery (one of p2pkh, p2sh, p2wpkh, or p2wsh), prefixed by
the length of the script. For security and privacy, this SHOULD be controlled by a new keypair.

3. The deposit’s Repayment Amount in TBTC.

Upon receipt of the redemption request, the smart contract escrows the repayment amount (which
includes the signer fee, if due), records the receipt of the request, and notifies the signers that a
signature is required.

Once notified of the redemption request, the signers must wait for confirmation on the host chain.
If they do not wait for confirmation, the redemption request may be dropped from the chain via a
reorg, in which case any signature they produced could be used to both redeem the BTC and submit
a signer fraud proof. A fraud proof created this way would appear valid to the host chain smart
contract because it no longer has a record of the redemption request.

Repayment Amount

Conceptually, the repayment amount is the deposit lot size plus the signer fee of 0.005 TBTC per 1
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TBTC (50 basis points). This ensures that the signers are paid upon completing redemption, that the
owner can be compensated for the redeemed deposit (in redemptions by parties other than the
owner), and that the Fee Rebate Token holder can receive their fee rebase (in pre-term
redemptions).

After all the math shakes out, the repayment amount can vary depending on the redeeming party,
the TDT holder, the FRT holder, and the deposit’s term state. The Deposit payment flow table lists
the various combinations that are possible, and the corresponding repayment amounts owed by the
redeemer, assuming three possible parties, A, B, and C. It also lists out the relevant disbursal upon
redemption proof.

Redemption Transaction Format

A redemption transaction has a perfectly canonical format which is embedded in the smart
contracts running on the tBTC host chain. This prevents a number of complex attacks on the tBTC
system, as well as simplifying contract logic. The requester may specify only 2 aspects of the
transaction: its fee and its destination. All other deposit-specific information (e.g. the outpoint and
the UTXO value) is known to the deposit contract in advance.

The redemption transaction has 1 input (the deposit UTXO) and 1 output (the redemption output). It
does not have change outputs, or additional inputs, as none are needed. It simply transfers the
underlying BTC to the sole custody of the requester. Its timelock and sequence numbers are set to 0
and its version is set to 1. Full documentation of the format and the construction of its sighash can
be found in the appendix.

Because the format is simple and canonical, any observer may use publicly available information to
build it. Once a signature has been published, it is simple to add a witness to the transaction and
broadcast it. So while signers have a strong incentive to broadcast the transaction as early as
possible, anyone may do so if the signers do not.

Redemption proof

A redemption proof is an SPV proof that a redemption transaction was confirmed by the Bitcoin
blockchain. Once a request to redeem is confirmed, the deposit smart contract expects a redemption
proof within 6 hours. To validate a redemption proof, the smart contract performs normal SPV proof
verification, and additionally verifies that the recipient matches the requester’s specified output
script, and the value is greater than or equal UTXO Value - highest allowed fee (see Allowing for
Bitcoin fee adjustment for more details).

Once redemption proof is confirmed, the signing fee is disbursed, the FRT holder receives their
escrowed funds (if the deposit was redeemed pre-term), and the TDT holder receives the remainder
of the repayment amount. As with the repayment amount, the amount each of the parties receives
in case of a successful redemption varies depending on the TDT holder, FRT holder, redeemer, and
deposit state. The Deposit payment flow table lists the various combinations that are possible, and
the corresponding repayment amounts owed by the redeemer, assuming three possible parties, A,
B, and C.
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Validating a signature

After the redemption request is sufficiently confirmed on the host chain, the signers MUST produce
a signature on the redemption transaction signature hash as requested. They have 3 hours in which
to produce either a signature, or a redemption proof before being subject to penalties. Upon
submission of a valid signature a redemption proof is still required, but the deadline is extended to 6
hours in total.

As discussed earlier, the host chain smart contract managing the deposit has all information
necessary to calculate the redemption transaction signature hash. This includes the signers'
threshold public key. Using the public key, the signature hash, and the redemption request the
smart contract can know both the cryptographic validity of the signature and that a signature on
that digest was requested as part of a redemption process.

Allowing for Bitcoin fee adjustment

Because Bitcoin fees are determined by network congestion and other highly unpredictable factors,
the requester may not select an appropriate fee. Signers are punished if no redemption proof is
submitted or if they sign without explicit authorization. This could create a no-win scenario for
signers, in which they could not get the requester’s transaction confirmed in the current fee climate
and would eventually be punished despite honest behavior. Unfortunately, we cannot rely on the
requester to stay online or update fee rates honestly. Ergo, the system requires some mechanism to
fairly adjust fee rates without the requester’s explicit consent.

The simplest scheme is to allow signers to increase the fee without requester consent after a
timeout. As such, we allow signers to increase fees linearly every 4 hours. Which is to say, if the fee
is f, after 4 hours the signers may notify the deposit contract of a fee increase to 2f and if the
transaction remains unconfirmed after 8 hours, the signers may notify the contract of a fee
increase to 3f. This ensures that a redemption transaction will eventually be confirmed on the
Bitcoin blockchain near the minimal fee rate given current network congestion. To prevent the
signers from repeatedly requesting fee increases, they must actually provide a signature at each fee
level. This ensures that each feerate is actually attempted before an increase is requested.

Governance

Philosophy

The governance philosophy is simple: govern as few system parameters as possible. This limited
view on governance means relying on social upgrades— deploying a new instance of the
system—rather than governed contract upgrades.

Social upgrades are akin to hard forks. They require an overwhelming economic consensus, as a
new token contract and other new contracts will need to be coordinated and agreed upon across
the market. The bar for a social upgrade is much higher than other common governance
paradigms, and will become even more difficult as an instance of the system ages.

The limited governance included in the system design follows a few principles:

• Governance should only impact new deposits, whenever possible. Each deposit should behave
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predictably over the long run, regardless of governance choices.

• All governance should abide by a time delay if possible, giving users time to respond to changes
in the system.

• The governance role should be assignable to a credibly neutral third party or eventual
decentralization.

Governance Functions

All governance functions and delays are enumerated below. Each MUST be callable by the contract
owner alone. For functions that have time delays, there is a finalize<Function> equivalent to the
begin<Function> that can finalize the change after the specified delay (e.g. beginLotSizesUpdate
/finalizeLotSizesUpdate).

Table 1. Governance Functions

Function Time delay Existing deposit impact

emergencyPauseNewDeposits() No delay None

beginSignerFeeDivisorUpdate(ui
nt16 divisor)

2 days None

beginLotSizesUpdate(uint64[]
_lotSizes)

2 days None

beginCollateralizationThreshol
dsUpdate(uint16 initial, …)

2 days None

beginEthBtcPriceFeedAddition(a
ddress ethBtcPriceFeed)

90 days Only if price feed fails

emergencyPauseNewDeposits()

Immutable code and user safety in case of newly discovered vulnerabilities are often considered at
odds. Instead, many smart contract systems rely heavily on a trusted admin key, allowing arbitrary
contract upgrades. Of course, if such capabilities exist, why use a blockchain at all?

Instead of contract upgrades, tBTC v1 includes the capability to pause new deposits for 10 days. The
capability can be used once, and doesn’t impact existing deposits or other system functionality.
After the 10-day period expires, new deposits are once again enabled.

This capability allows the dev team to pause new deposits in case of a 0-day exploit, buying
precious time to alert users of any risk to funds. While the intent is for use in dire circumstances,
the mechanism has been structured so the dev team can’t use it as a general-purpose kill-switch.

After 365 days, deposits can no longer be paused, and any call to emergencyPauseNewDeposits() MUST
revert.

beginLotSizesUpdate(uint64[] _lotSizes)

The contract owner may update the lot sizes enabled for new deposits after a 2 day delay.

There should always be a 1 BTC lot size enabled to keep this call from acting as an inadvertent kill-
switch. Any update that does not include a 1 BTC lot size MUST revert.
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beginSignerFeeDivisorUpdate(uint16 divisor)

Unfortunately, the design of tBTC v1 does not allow for market-discoverable signer fees. Instead, the
function of setting signer fees is left to governance.

The contract owner may update the signer fee divisor after a 2 day delay, impacting new deposits.
The fee is limited to 0.03% - 10.0%, to prevent a very small or very large signer fee update from
acting as a kill-switch.

Any update outside that range MUST revert.

beginCollateralizationThresholdsUpdate(uint16 initial, …)

The contract owner may update the collateralization thresholds for new deposits after a 2 day
delay.

While the update only directly impacts new deposits, if the contract owner were to collude with an
attacker, an update could harm the peg. For that reason, any initial threshold under 100% or over
300% MUST revert.

beginEthBtcPriceFeedAddition(address ethBtcPriceFeed)

The contract owner may add a new backup ETHBTC price feed for all deposits after a 90 day delay.
Note that this delay is significantly longer than other governance controls.

Price feeds must be tracked in a list, and a price feed in that list must only used if all previously-
added price feeds present themselves as inactive. Price feeds provide a peek() function that returns
the value of the price feed alongside a boolean indicating whether the feed is active. If the second
value in that return is false, the feed is considered inactive and the next feed in the list must be
used.

This update allows straightforward planning for an intentional decommissioning of the primary
Medianizer feed. The long lead time allows any existing depositors who may be concerned about
the new price feed ample time to close open deposits and retrieve their funds.

This update can also be used to deal with an unexpected deactivation of the primary feed, though
in that event the system will take 90 days to recover.

Appendix

Redemption Payment and Disbursal Scenarios

For a BTC lot size of 1 BTC corresponding to 1 TBTC and signer fee of 0.005 TBTC (50 basis points),
the following table describes the amounts disbursed to each party at redemption time for pre- and
at-term deposits, depending on who holds the TDT and FRT, and who initiates redemption. Three
possible parties exist in the table—A, B, and C—and the listed scenarios cover situations where the
same party holds the two tokens and initiates redemption, different parties have each role, and
possibilities in between.

Table 2. Deposit payment flow
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Deposit state TDT holder FRT holder Redeemer Repayment
Amount

Disbursal
Amounts

Pre-term A - A 0.005 TBTC A

1 BTC

signers

0.005 TBTC

Pre-term A - B N/A[7] N/A

Pre-term A A A 0 A

1 BTC

signers

0.005 TBTC

Pre-term A B A 0.005 TBTC A

1 BTC

signers

0.005 TBTC

B

0.005 TBTC
(escrowed)

Pre-term A B C N/A N/A

At-term A - A 0.005 TBTC A

1 BTC

signers

0.005 TBTC

At-term A - B 1 TBTC B

1 BTC

signers

0.005 TBTC

A

0.995 TBTC

At-term A A A 0 A

1 BTC

signers

0.005 TBTC
(escrowed)
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Deposit state TDT holder FRT holder Redeemer Repayment
Amount

Disbursal
Amounts

At-term A B A 0 A

1 BTC

signers

0.005 TBTC
(escrowed)

B

0

At-term A B B 1 TBTC B

1 BTC

signers

0.005 TBTC
(escrowed)

A

1 TBTC

At-term A A B 1 TBTC B

1 BTC

signers

0.005 TBTC
(escrowed)

A

1 TBTC

At-term A B C 1 TBTC C

1 BTC

signers

0.005 TBTC
(escrowed)

B

0

A

1 TBTC

Note that all of these scenarios can be conceptualized as the TDT holder always receiving the 1
TBTC used to redeem the deposit; when the TDT holder redeems their own deposit, the TBTC they
receive would be from themselves, so they simply owe less. Similarly, the FRT holder always
receives escrow back when redeeming pre-term, so in cases where the redeemer holds the FRT, the
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redeemer simply does not owe the signer fee at redemption time.

Appendix

Deposit and redemption state machine

[deposit state machine] | img/generated/deposit-state-machine.png

We model each deposit as a simple state machine.

Funding Flow

Overview

This is the process to set up a deposit, and fund it with BTC. Upon successful funding, the funder
will own and new Deposit and will be able to create new TBTC. To start the funding process, a
funder places a small bond, and requests creation of a new keep to custody BTC. If a new keep is
successfully formed, the Keep contracts notify the Deposit of the signing group’s public key. If keep
setup fails, the funding process is aborted and the Keep system punishes the faulting parties.

Once a keep is formed, the funder transfers BTC to the keep’s pay to witness public key hash
(p2wpkh) address. This BTC becomes the underlying collateral for the new Deposit. The funder
proves deposit via a stateless SPV proof of inclusion in the Bitcoin blockchain. If the funder fails to
make this transfer in a timely manner, the funding process is aborted and the funder’s keep bond is
forfeit.

Once BTC collateralization has been proven, the Deposit becomes active. Then the funder may
withdraw TBTC, up to the amount of BTC collateral (less the reserved TBTC). The funding process
can only result in an active Deposit or an abort state.

States

START

• Deposit does not exist yet

AWAITING_SIGNER_SETUP

• The funder has placed a bond, and requested a signing group

• The Keep contracts must select a signing group or return failure

AWAITING_BTC_FUNDING_PROOF

• A signing group has been formed, and their public key hash returned

• The funder MUST return a SPV proof of funding before a timeout

FRAUD_AWAITING_BTC_FUNDING_PROOF

• Signing group fraud has been detected before the funding proof has been provided

• Signers bonds are seized when this state is entered.
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• If the funder can provide a funding proof in a reasonable amount of time, then they will receive
the singer bonds

• If the timeout elapses, signer bonds will be partially slashed and then returned.

• NOTE: the timeout on this state should be relatively short. We want to make it risky for a
depositor who has not already funded when this state is entered to fund in order after this state
is entered in order to try to receive the full signer bond amount

Reachable exterior states

• FAILED_SETUP

◦ via a timeout in AWAITING_SIGNER_SETUP

◦ via a timeout in AWAITING_BTC_FUNDING_PROOF

◦ via any state transitin from FRAUD_AWAITING_BTC_FUNDING_PROOF

• ACTIVE

◦ via provideBTCFundingProof

Internal Transitions

createNewDeposit

• Anyone may put up a bond requesting a new signer group be formed

• access control

◦ anyone

• writes

◦ mapping _depositBeneficiaries(address ⇒ address)

▪ on the TBTC system contract. for 721 compatibility, use uint256 when calling

• from

◦ START

• to

◦ AWAITING_SIGNER_SETUP

notifySignerSetupFailure

• Keep contract (or anyone else after a timer) notifies the deposit ath signer group setup has
failed (or at least not proceeded in a timely manner)

• access control

◦ Keep contracts

◦ anyone (after a timeout)

• from

◦ AWAITING_SIGNER_SETUP

• to
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◦ FAILED_SETUP

notifySignerPubkey

• Keep contract notifies the Deposit of its signing group’s public key

• access control

◦ Keep contracts

• args

◦ bytes _keepPubkey

• writes

◦ bytes32 signingGroupPubkeyX;

▪ The X coordinate of the signing group’s pubkey

◦ bytes32 signingGroupPubkeyY;

▪ The Y coordinate of the signing group’s pubkey

◦ uint256 fundingProofTimerStart

▪ Start the funding proof timer

• from

◦ AWAITING_SIGNER_SETUP

• to

◦ AWAITING_BTC_FUNDING_PROOF

notifyFundingTimeout

• Anyone may notify a Deposit that its funder has failed to submit a funding proof. The funder’s
bond is forfeit due to non-completion at this point

• access control

◦ anyone

• reads

◦ uint256 fundingProofTimerStart

• from

◦ AWAITING_BTC_FUNDING_PROOF

• to

◦ FAILED_SETUP

provideFundingECDSAFraudProof

• Provide a fraud proof before a funding SPV proof has been verified

• The funder’s bond is returned here

• Signer bonds are seized here
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• We consider this to be a different transition than provideECDSAFraudProof because it yields a
different state. This also prevents edge cases with very short-lived deposits

• access control

◦ anyone

• args

◦ bytes _signature

▪ The purportedly fraudulent signature

◦ bytes _digest

▪ The digest on which the signature was made

◦ bytes _preImage

▪ The sha256 preimage of that digest (on Bitcoin txns, this will always be the 32 byte
intermediate sighash digest)

• reads

◦ bytes32 signingGroupPubkeyX;

▪ The X coordinate of the signing group’s pubkey

▪ to check that the signature is valid

◦ bytes32 signingGroupPubkeyY;

▪ The Y coordinate of the signing group’s pubkey

▪ to check that the signature is valid

◦ uint256 fundingProofTimerStart

▪ don’t allow this state transition if the funder has timed out

• writes

◦ uint256 fundingProofTimerStart

▪ update the funding proof timer for the new fraud time period

• from

◦ AWAITING_BTC_FUNDING_PROOF

• to

◦ FRAUD_AWAITING_BTC_FUNDING_PROOF

notifyFraudFundingTimeout

• Anyone may notify a Deposit that its funder has failed to submit a funding proof during the
fraud period. The funder is not penalized for this

• When this occurs, signer bonds are partially slashed and then returned

• The partial slash is distributed to the current beneficiary

• We consider this to be a different transition than notifyFundingTimeout because it yields a
different state and has different behavior
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• access control

◦ anyone

• reads

◦ uint256 fundingProofTimerStart

▪ for determining timeout of proof period

• from

◦ FRAUD_AWAITING_BTC_FUNDING_PROOF

• to

◦ FAILED_SETUP

provideFraudBTCFundingProof

• Anyone may notify a Deposit that its funder has sent funds to the signers' Bitcoin public key
hash

• If this occurs, signer bonds are distributed to the funder

• We consider this to be a different transition than provideBTCFundingProof because it yields a
different state and has different behavior

• access control

◦ anyone

• from

◦ FRAUD_AWAITING_BTC_FUNDING_PROOF

• to

◦ FAILED_SETUP

External Transitions

provideBTCFundingProof

• Funder (or anyone else) provides a proof of BTC funding for the Deposit The funder’s bond is
returned once this proof is successfully verified

• access control

◦ Anyone

◦ expected: funder

• args

◦ bytes _tx

◦ bytes _proof

◦ uint _index

◦ bytes _headers

• writes
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◦ bytes8 depositSizeBytes

▪ value of UTXO in satoshis

◦ bytes utxoOutpoint

▪ unique identifier for the UTXO

• from

◦ AWAITING_BTC_FUNDING_PROOF

• to

◦ ACTIVE

Redemption Flow

Overview

This is the process to redeem a deposit. Once started, redemption cannot be cancelled, except by
proving signer fraud. Cancellation is impossible because as soon as redemption is requested the
signers are permitted to sign, and a signature (even one neither chain knows about) can’t be
revoked.

Ergo, cancellation of this process could result in BTC moved from the signers' address, and an
Active Deposit with TBTC outstanding. This would result in a broken supply peg.

The requester notifies the Deposit of the bitcoin tx information (fee and recipient pubkeyhash) they
are requesting, along with enough TBTC to cover the outstanding TBTC from the Deposit, plus
enough to cover signer fees and the funder bond payment.

States

AWAITING_WITHDRAWAL_SIGNATURE

• A redemption has been initiated

• The signers MUST sign a digest

• The signers may return the signature for verification

• NOTE: there is a disincentive to return a signature, as the caller must pay for ecrecover gas and
storage slot updates (to transition states).

AWAITING_WITHDRAWAL_PROOF

• The signers has returned a valid signature on the message

• The signers MUST provide a settlement proof

• In happy cases, we may skip the this state entirely.

Flow reachable from

• ACTIVE

◦ via requestWithdrawal

43



Reachable exterior states

• LIQUIDATION_IN_PROGRESS

◦ via an ECDSA or BTC fraud proof

◦ via a state timeout

• REDEEMED

◦ By providing a valid proof showing payment to the requester

Internal Transitions

provideWithdrawalSignature

• signers provide a valid ECDSA signature under their pubkey

• access control

◦ Anyone

◦ expected: 1 or more signers

• args

◦ uint8 _v

◦ bytes32 _r

◦ bytes32 _s

▪ The redemption signature

• reads

◦ bytes32 signingGroupPubkeyX;

▪ The X coordinate of the signing group’s pubkey

◦ bytes32 signingGroupPubkeyY;

▪ The Y coordinate of the signing group’s pubkey

◦ uint256 withdrawalRequestTime

◦ bytes32 lastRequestedDigest

▪ Only accept signatures on the most recent requested digest

• from

◦ AWAITING_WITHDRAWAL_SIGNATURE

• to

◦ AWAITING_WITHDRAWAL_PROOF

increaseWithdrawalFee

• Explicitly allow a new signature with an increased fee. The fee may increased in linear steps
over time. The new fee must be explicitly authorized by the contract, and the authorizing tx
confirmed, before a new signature is created. To prevent bad behavior, signers must provide a
signature at each fee level well before the next increase is available.
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• access control

◦ Anyone

▪ after a timer

• args

◦ bytes8 _previousOutputValue

▪ the previous output value

◦ bytes8 _newFee

• reads

◦ uint256 initialWithdrawalFee

◦ bytes requesterPKH

◦ uint256 block.timestamp

• writes

◦ uint256 withdrawalRequestTime

▪ rewrite this time to give signers a time extension

◦ bytes32 lastRequestedDigest

▪ update the most recently requested signature

• from

◦ AWAITING_WITHDRAWAL_PROOF

• to

◦ AWAITING_WITHDRAWAL_SIGNATURE

provideWithdrawalProof

• signers provides a valid Bitcoin SPV Proof of payment to the requester

• access control

◦ Anyone

◦ expected: 1 or more signers

• args

◦ bytes _bitcoinTx

◦ bytes _merkleProof

◦ bytes _bitcoinHeaders

• reads

◦ bytes requesterPKH

◦ uint256 difficultyReq

▪ from difficulty relay contract

◦ uint256 depositSize
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◦ uint256 initialWithdrawalFee

• writes

◦ mapping(address ⇒ uint256) balances

▪ on TBTC ERC20 Contract

▪ 1 time for each signer

▪ 1 time for the deposit contract

• from

◦ AWAITING_WITHDRAWAL_PROOF

◦ AWAITING_WITHDRAWAL_SIGNATURE

• to

◦ REDEEMED

External Transitions

requestWithdrawal (inbound)

• Anyone requests a withdrawal

• access control

◦ Anyone

• args

◦ bytes8 _outputValueBytes

◦ bytes _requesterPKH

• reads

◦ mapping(address ⇒ address) depositBeneficiaries

▪ for auth

◦ bytes utxoOutpoint

▪ For calculating the sighash

◦ bytes20 signerPKH

▪ For calculating the sighash

◦ bytes8 depositSizeBytes

▪ For calculating the sighash

• writes

◦ mapping(bytes32 ⇒ uint256) wasRequested

▪ record that the digest was requested

◦ uint256 initialWithdrawalFee

▪ the requested withdrawal fee

◦ bytes20 requesterPKH
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▪ the bitcoin hash160 pubkeyhash to which to deliver BTC

◦ uint256 outstandingTBTC

▪ check that the `Deposit’s TBTC has been returned

▪ this is a derived attribute from UTXO value, the signer fee, and the funder bond value

◦ uint256 withdrawalRequestTime

▪ start timeouts for signers wrt signing and withdrawal

◦ mapping(address ⇒ uint256) balances

▪ change requester balance on TBTC ERC20 Contract

◦ uint256 totalSupply

▪ change total supply (burn) on TBTC ERC20 Contract

◦ bytes32 lastRequestedDigest

▪ record the digest as the newest

• from

◦ ACTIVE

• to

◦ AWAITING_WITHDRAWAL_SIGNATURE

provideECDSAFraudProof (outbound)

• access control

◦ anyone

• from

◦ AWAITING_WITHDRAWAL_PROOF

◦ AWAITING_WITHDRAWAL_SIGNATURE

• to

◦ LIQUIDATION_IN_PROGRESS

notifyRedemptionProofTimeout (outbound)

• access control

◦ anyone

• from

◦ AWAITING_WITHDRAWAL_PROOF

• to

◦ LIQUIDATION_IN_PROGRESS

notifySignatureTimeout (outbound)

• access control
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◦ anyone

• from

◦ AWAITING_WITHDRAWAL_SIGNATURE

• to

◦ LIQUIDATION_IN_PROGRESS

Frauds & Aborts

Overview

Fraud and abort processes handle signer failures. This includes punishing signers and starting the
bond liquidation process. These transitions can be invoked from almost any Deposit state, as faults
may occur during any other flow. Once fault has been proven, the bonds are put up for auction to
the public via the Liquidation flow.

While there is no fraud or abort state per se, it seems helpful to put the fraud-related state
transitions in a single document.

States

COURTESY_CALL

• The signers have been courtesy called

• They SHOULD request redemption of the deposit

• Anyone may request redemption

LIQUIDATION_IN_PROGRESS

• Liquidation due to undercollateralization or an abort has started

• Automatic (on-chain) liquidation was unsuccessful

FRAUD_LIQUIDATION_IN_PROGRESS

• Liquidation due to fraud has started

• Automatic (on-chain) liquidation was unsuccessful

LIQUIDATED

• End state

• The bonds have been liquidated and the position has been closed out

Flow reachable from

• ACTIVE

• AWAITING_WITHDRAWAL_SIGNATURE

• AWAITING_WITHDRAWAL_PROOF

• SIGNER_MARGIN_CALLED
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Internal Transitions

purchaseSignerBondsAtAuction

• anyone may purchase the seized signer bonds at auction

• access control

◦ anyone

• reads

◦ uint256 liquidationInitiated

▪ for calculating auction value

◦ mapping (address ⇒ uint256) balances

▪ on the TBTC token contract

• writes

◦ mapping (address ⇒ uint256) balances

▪ on the TBTC token contract, to burn tokens

• from

◦ FRAUD_LIQUIDATION_IN_PROGRESS

◦ LIQUIDATION_IN_PROGRESS

• to

◦ LIQUIDATED

notifyCourtesyTimeout

• Anyone may poke the contract to show that the courtesy period has elapsed

• Starts signer liquidation for abort

• access control

◦ anyone

• reads

◦ uint256 courtesyCallInitiated

• writes

◦ uint256 liquidationInitiated

▪ the timestamp when liquidation was started

• from

◦ COURTESY_CALL

• to

◦ LIQUIDATION_IN_PROGRESS
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notifyUndercollateralizedLiquidation

• Anyone may notify the contract that it is severely undercollateralized

• Undercollateralization does not halt the redemption process. Only fraud does.

• access controls

◦ anyone

• reads

◦ PRICE_FEED

• writes

• from

◦ ACTIVE

◦ COURTESY_CALL

• to

◦ LIQUIDATION_IN_PROGRESS

External Transitions

provideECDSAFraudProof

• Anyone provides a valid signature under the signers' group key. Proof is fraud if the signature is
valid and was not explicitly requested.

• access control

◦ anyone

• args

◦ bytes _signature

▪ The purportedly fraudulent signature

◦ bytes _publicKey

▪ The public key to verify the signature under (must match signer account)

◦ bytes _digest

▪ The digest on which the signature was made

◦ bytes _preImage

▪ The sha256 preimage of that digest (on Bitcoin txns, this will always be the 32 byte
intermediate sighash digest)

• reads

◦ bytes32 signingGroupPubkeyX;

▪ The X coordinate of the signing group’s pubkey

▪ to check that the signature is valid

◦ bytes32 signingGroupPubkeyY;
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▪ The Y coordinate of the signing group’s pubkey

▪ to check that the signature is valid

◦ mapping(bytes32 ⇒ uint256) wasRequested

▪ check whether the signature was requested

• from

◦ AWAITING_SIGNER_SETUP

◦ AWAITING_BTC_FUNDING_PROOF

◦ ACTIVE

◦ AWAITING_WITHDRAWAL_SIGNATURE

◦ AWAITING_WITHDRAWAL_PROOF

◦ SIGNER_MARGIN_CALLED

• to

◦ FRAUD_LIQUIDATION_IN_PROGRESS

notifyRedemptionProofTimeout

• Anyone may poke the contract to show that a redemption proof was not provided within the
permissible time frame. Treated as Abort

• access control

◦ anyone

• reads

◦ uint256 withdrawalRequestTime

▪ for checking if the timer has elapsed

• writes

◦ uint256 liquidationInitiated

▪ the timestamp when liquidation was started

• from

◦ AWAITING_WITHDRAWAL_PROOF

• to

◦ LIQUIDATION_IN_PROGRESS

notifySignatureTimeout

• Anyone may poke the contract to show that a redemption signature was not provided within the
permissible time frame. Treated as Abort

• access control

◦ anyone

• reads
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◦ uint256 withdrawalRequestTime

▪ for checking if the timer has elapsed

• writes

◦ uint256 liquidationInitiated

▪ the timestamp when liquidation was started

• from

◦ AWAITING_WITHDRAWAL_SIGNATURE

• to

◦ LIQUIDATION_IN_PROGRESS

notifyCourtesyCall

• Anyone may notify the contract that it is undercollateralized and should be closed

• access controls

◦ anyone

• reads

◦ PRICE_FEED

• writes

◦ uint256 courtesyCallInitiated

▪ timestamp when the call was initiated

• from

◦ ACTIVE

• to

◦ COURTESY_CALL

notifyDepositExpiryCourtesyCall

• Anyone may notify the contract that it has reached its end-of-term

• This triggers the courtesy call phase

• access controls

◦ anyone

• reads

◦ block.timestamp

◦ uint256 DEPOSIT_TERM_LENGTH

▪ tbtc constants

• writes

◦ uint256 courtesyCallInitiated

▪ timestamp when the call was initiated
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• from

◦ ACTIVE

• to

◦ COURTESY_CALL

exitCourtesyCall

• During a courtesy call period, if the deposit is not expired

• Anyone may notify the contract that it is no longer undercollateralized

• This returns the contract to ACTIVE state

• access controls

◦ anyone

• reads

◦ block.timestamp

◦ uint256 fundedAt

▪ to check if the deposit is expiring

◦ bool getCollateralizationPercentage() < TBTCConstants.getUndercollateralizedPercent()

▪ Check the price feed to see if collateral is sufficient

• from

◦ COURTESY_CALL

• to

◦ ACTIVE

Simplified Payment Verification (SPV): A Primer

Overview

While a full discussion of SPV proofs is outside the scope of this document, it is important to
develop a working understanding of their properties, as many system-critical processes rely on the
SPV security assumptions. SPV proofs are used during the funding, redemption, and fraud
processes to provide the host chain with information about the state of the remote chain.
Practically speaking, there is no other way that the host chain can learn about the state or history of
the remote chain.

Objectivity in Proof of Work

The SPV proofs used in this system rely on a property of Proof of Work (PoW) called "objectivity."
Simply put, proof of work cannot be forged and no outside information is needed to check its
validity. Without knowing the history of the chain, we can examine a Bitcoin block header and
determine (probabilistically) how many hashes were performed to generate it. The number of
hashes used to generate a header represents an unforgeable cost inherent to that header,
independent of its context or history.
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Contrast this with Proof of Stake, in which the cost of generating a header is dependent on the
entire history to date. We cannot know whether staker signatures represent the current validator
set without complete history. In other words, Proof of Work in isolation still carries meaning, while
Proof of Stake in isolation does not. While SPV inspection of Proof of Stake systems is possible, the
security model is completely different. In addition, implementation approaches are much more
costly than SPV inspection of objective systems. As such, this section concerns itself only with
verification of Proof of Work, and future versions of the system utilizing SPV inspection of Proof of
Stake systems are left for another day.

Security Model

In Nakamoto Consensus, each node follows the heaviest valid chain. "Heaviest" refers to the
objective proof of work metric. The chain with the most accumulated work is deemed the heaviest
chain. Validity within the consensus is a bit more involved. Conceptually, nodes agree to evaluate
new information according to a set of rules, and to reject anything that does not meet those rules.
In practice, these rules define blocks consisting of headers and transactions, describe the format of
transactions, and provide some user-programmable rules like Script and the EVM. Protocol-
following nodes will always make the same validity decisions and will always choose the heaviest
header chain containing only valid transactions and blocks. Therefore honest nodes will always
reach the same state, which is to say, will always reach consensus.

The SPV security model is strictly weaker than the Nakamoto Consensus model, but still sufficient
for our purposes. The SPV model checks work on headers, but enforces only a small subset of the
validity rules. In essence, SPV verifiers assume that miners will not spend resources producing
proofs of work on top of invalid blocks or transactions. They check validity of some set of headers,
including verifying the work included in those headers, but do not verify each transaction. Instead,
SPV verifiers check only transactions in which they have some interest. In the context of tBTC, we
are interested only in specific UTXOs on the Bitcoin blockchain, so we validate only the transactions
and headers related to those UTXOs, rather than all transactions.

When the assumption fails, and significant work is put on top of invalid transactions, the security
model may also fail. We call these "fake" proofs and "fake" headers, because they are not
semantically valid Bitcoin transactions or headers. We argue that fake proofs will be extremely
rare. Our argument against them is rooted in the objective economics of Proof of Work. If a miner
chooses to devote resources to producing work on top of an invalid transaction she must give up
mining rewards while still bearing the electricity and hardware costs of mining. She gives up
mining rewards because the invalid transaction may never be included in the main Bitcoin chain. It
will be rejected by all fully validating nodes. Therefore producing a fake proof has a large inherent
cost. We argue that the system is economically secure so long as the cost of producing a fake proof
is high and the value that can be gained by producing a fake proof is orders of magnitude less than
that cost.

The security of SPV systems also benefits from a built-in assumption of the Nakamoto Consensus
model: that no attacker has greater than 50% of the hashrate. Assuming that is true, no attacker can
generate Bitcoin proofs of work faster than the main Bitcoin blockchain. This implies that honest
headers are generated (within the tolerance of the Poisson distribution) before any dishonest
header. Extending the model, if no attacker has greater than an n-fraction of the current Bitcoin
hashrate (where n >= 2) then honest headers may be generated n-1 - 1 times faster. For example, an
attacker controlling 25% (1/4) of the Bitcoin hashrate could generate a header on average every 40
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minutes. The main chain, slowed by the loss of that 25%, would generate a header every 13 1/3
minutes — three times faster. To take advantage of this, the proof must commit to some recent
information that was previously unknown to the attacker, e.g. a past block header, or a new public
key hash. This provides a lower bound on the time at which the attacker begins to generate a false
proof.

Relays

The most conceptually straightforward SPV system is a relay. In a relay system each Proof of Work
header is submitted to and verified by the host chain. The host chain smart contracts keep track of
the best known header, and all past headers seen. An SPV proof in a relay system demonstrates that
a transaction is confirmed by the best-seen header and is deep enough that its disconfirmation is
unlikely. Each additional header in a relay, as in the consensus it tracks, secures all previous
headers. So we grow more certain of older chain events over time.

Stateless SPV

Where relays decline to check validity, stateless SPV systems both decline to check validity and fail
to follow the heaviest chain. In fact, a stateless SPV system does not track anything at all. Instead
stateless SPV proof relies entirely on the objective work present in a discrete slice of headers. A
stateless SPV proof consists of one or more transactions, merkle proofs of inclusion for those
transactions, and a set of consecutive headers on top of those transactions. A verifier can then
inspect the headers, and give the proof an objective quality score based on the amount of work in
those headers. Anyone interested in using the state and history information in the stateless SPV
proof’s information can determine whether to accept or reject it based on the proof’s quality.

Stateless SPVs are relatively recent work, spearheaded by Summa and originally described in a
technical post on the Summa cross-chain auction system. Their compelling advantage is size and
cost-efficiency. A stateless SPV proof is less than 1KB, all of which can be discarded after validation.
A relay, on the other hand, stores each header on-chain. This means a relay will consume linearly
increasing state space over time. Maintenance costs are already unsustainably n high, as evidenced
by the failure of BTCRelay in December 2017. Given the already high cost of on-chain storage and
the likely introduction of state rent in major host chain candidates, relying on a stateful relay seems
short-sighted. A high-state system that is viable today may not be viable in the future.

We argue that for recent transactions stateless SPV’s security is equivalent to a relay’s. An attacker
would have to spend the same number of hashes to provide the relay with fake headers as it would
to provide the stateless SPV verifier with a stateless proof with sufficient work. However, compared
to relays, stateless SPV proofs do not gain security over time without extending each proof to
include new headers. It is important to this argument that the recency of the transaction is known,
without this, an attacker could begin to generate a proof well in advance of proving time,
essentially getting a head start on the main chain. Relays get recency assurances at each block, as
each new header must reference the header immediately preceding it, but a stateless SPV proof
must get its recency from some outside source.

Standardized Sighash Construction
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Overview

For signing, Bitcoin transforms transactions using a process known as the SignatureHash (sighash)
algorithm. The original sighash algorithm had many drawbacks and sharp edges. In SegWit scripts,
the algorithm was changed to follow BIP143 (legacy addresses still use the original algorithm).

The goal of the sighash algorithm is to commit to selected aspects of the transaction in the signed
digest. This prevents malleation, and indicates the signer’s intent with respect to them. Specifically,
BIP143 sighash commits to the following (not in this order):

1. One or All inputs

2. none, one, or all outputs

3. The specific prevout this signature witnesses

4. The pubkey script or redeem script code locking that prevout

5. The value of the prevout this signature witnesses

6. The sequence of the input spending that prevout

7. The transaction version

8. The transaction locktime

These are committed to via the double-sha256 of an ordered bytestring. This digest is signed, and
can be reproduced by anyone inspecting the transaction (provided they have access to historical
chain data to validate the prevout value). Sighash calculation is thus a crucial part of the Bitcoin
consensus process.

Because a signing group may withhold signatures, the redemption flow forces them to provide a
valid signature within a certain timeout. This implies that the redemption flow must be able to
evaluate "validity" means in this context. Because the goal is redemption, a "valid" signature is one
that witnesses a transaction that sends funds to the public key hash requested at the beginning of
the redemption flow. In order to check that a given signature witnesses such a transaction, we need
to enable our contracts to validate the sighash digest signed.

By far the easiest way to do this is to create a canonical transaction. We can then implement a
greatly-reduced set of BIP143’s functionality while still being able to assess signature validity
during redemption. This allows us to, instead of calculating the sighash of an input transaction,
specify a sighash, and force construction of a transaction that matches it. This way the contract can
request extremely precise redemption transactions with minimal overhead.

Canonical Redemption Sighash

BIP143 follows this general format:

Double SHA256 of the serialization of:
   1. nVersion of the transaction (4-byte little endian)
   2. hashPrevouts (32-byte hash)
   3. hashSequence (32-byte hash)
   4. outpoint (32-byte hash + 4-byte little endian)
   5. scriptCode of the input (serialized as scripts inside CTxOuts)
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   6. value of the output spent by this input (8-byte little endian)
   7. nSequence of the input (4-byte little endian)
   8. hashOutputs (32-byte hash)
   9. nLocktime of the transaction (4-byte little endian)
  10. sighash type of the signature (4-byte little endian) ①

① See the Summa description of different sighash types for more details on this field.

Because we don’t need to use timelocks in our redemption transaction, we forbid their usage,
allowing us to immediately standardize many elements. We also forbid use of any sighash flag,
other than SIGHASH_ALL, so we can standardize that as well. Here we replace those elements with the
standardized hex strings:

Double SHA256 of the serialization of:
   1. 01000000
   2. hashPrevouts (32-byte hash)
   3. hashSequence (32-byte hash)
   4. outpoint (32-byte hash + 4-byte little endian)
   5. scriptCode of the input (serialized as scripts inside CTxOuts)
   6. value of the output spent by this input (8-byte little endian)
   7. 00000000
   8. hashOutputs (32-byte hash)
   9. 00000000
  10. 01000000

Forbidding the transaction to have more than 1 input or output gives us one additional victory.
Point 3, hashSequence is defined as "the double SHA256 of the serialization of nSequence of all
inputs." By having 1 input and disabling its timelock feature we can standardize this as well:

Double SHA256 of the serialization of:
   1. 01000000
   2. hashPrevouts (32-byte hash)
   3. 8cb9012517c817fead650287d61bdd9c68803b6bf9c64133dcab3e65b5a50cb9
   4. outpoint (32-byte hash + 4-byte little endian)
   5. scriptCode of the input (serialized as scripts inside CTxOuts)
   6. value of the output spent by this input (8-byte little endian)
   7. 00000000
   8. hashOutputs (32-byte hash)
   9. 00000000
  10. 01000000

Next, we fill in information that the contract has access to, starting with the details of its custodied
UTXO. The Deposit contract has validated the SPV funding proof, and stored its value as well as its
outpoint. BIP143 specifies hashPrevouts as "the double SHA256 of the serialization of all input
outpoints" So we can populate steps 2, 4, and 6 using known information:

bytes8 depositSizeBytes
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bytes utxoOutpoint

Double SHA256 of the serialization of:
   1. 01000000
   2. {hash256(utxoOutpoint)}
   3. 8cb9012517c817fead650287d61bdd9c68803b6bf9c64133dcab3e65b5a50cb9
   4. {utxoOutpoint}
   5. scriptCode of the input (serialized as scripts inside CTxOuts)
   6. {depositSizeBytes}
   7. 00000000
   8. hashOutputs (32-byte hash)
   9. 00000000
  10. 01000000

The scriptCode is also available to the contract, as it is derived from the signers' threshold public
key hash. According to BIP143, "For P2WPKH witness program, the scriptCode is 0x1976a914{20-
byte-pubkey-hash}88ac."

bytes8 depositSizeBytes
bytes utxoOutpoint
bytes20 signerPKH

Double SHA256 of the serialization of:
   1. 01000000
   2. {hash256(utxoOutpoint)}
   3. 8cb9012517c817fead650287d61bdd9c68803b6bf9c64133dcab3e65b5a50cb9
   4. {utxoOutpoint}
   5.
       1. 1976a914
       2. {signerPKH}
       3. 88ac
   6. {depositSizeBytes}
   7. 00000000
   8. hashOutputs (32-byte hash)
   9. 00000000
  10. 01000000

This leaves us with only hashOutputs unknown to the contract at redemption time. Intuitively, this
makes sense, as the contract knows where the money is, but not where it should be sent on
redemption. As always, we reference BIP143 which says "hashOutputs is the double SHA256 of the
serialization of all output amount [sic] (8-byte little endian) with scriptPubKey." This can get quite
long with multiple outputs, but as mentioned earlier, we can standardize on single-output
transactions. This means that it’s the double-sha256 of the 8-byte LE value being redeemed (less a
mining fee), and the pubkey script containing the redeemer’s script hash. In our redemption flow,
both of these things are set by the user at request time. This means the contract has access to them
as function arguments when it requests that the signer group produces a signature. Therefore the
contract can specify a precise digest for that signature:
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bytes8 depositSizeBytes
bytes utxoOutpoint
bytes20 signerPKH

Double SHA256 of the serialization of:
   1. 01000000
   2. {hash256(utxoOutpoint)}
   3. 8cb9012517c817fead650287d61bdd9c68803b6bf9c64133dcab3e65b5a50cb9
   4. {utxoOutpoint}
   5.
       1. 1976a914
       2. {signerPKH}
       3. 88ac
   6. {depositSizeBytes}
   7. 00000000
   8.
       1. hash256(
       2. {_outputValueBytes}
       3. {_requesterPKH}
       4. )
   9. 00000000
  10. 01000000

It is easy to implement this as a pure function in Solidity:

/// @notice                 calculates the sighash of a redemption tx
/// @dev                    documented in bip143. many values are hardcoded
/// @param _outpoint        the bitcoin output script
/// @param _inputPKH        the input pubkeyhash (hash160(sender_pubkey))
/// @param _inputValue      the value of the input in satoshi
/// @param _outputValue     the value of the output in satoshi
/// @param _outputPKH       the output pubkeyhash (hash160(recipient_pubkey))
/// @return                 the double-sha256 (hash256) signature hash
function oneInputOneOutputSighash(
    bytes _outpoint,  // 36 byte UTXO id
    bytes20 _inputPKH,  // 20 byte hash160
    bytes8 _inputValue,  // 8-byte LE
    bytes8 _outputValue,  // 8-byte LE
    bytes20 _outputPKH  // 20 byte hash160
) public pure returns (bytes32) {
    // Fixes elements to easily make a 1-in 1-out sighash digest
    // Does not support timelocks
    bytes memory _scriptCode = abi.encodePacked(
        hex"1976a914",  // length, dup, hash160, pkh_length
        _inputPKH,
        hex"88ac");  // equal, checksig
    bytes32 _hashOutputs = abi.encodePacked(
        _outputValue,  // 8-byte LE
        hex"160014",  // this assumes p2wpkh
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        _outputPKH).hash256();
    bytes memory _sighashPreimage = abi.encodePacked(
        hex"01000000",  // version
        _outpoint.hash256(),  // hashPrevouts
        // hashSequence(hash256(00000000))
        hex"8cb9012517c817fead650287d61bdd9c68803b6bf9c64133dcab3e65b5a50cb9",
        _outpoint,  // outpoint
        _scriptCode,  // p2wpkh script code
        _inputValue,  // value of the input in 8-byte LE
        hex"00000000",  // input nSequence
        _hashOutputs,  // hash of the single output
        hex"00000000",  // nLockTime
        hex"01000000"  // SIGHASH_ALL
    );
    return _sighashPreimage.hash256();
}

Glossary

Host chain

The chain on which TBTC is minted

Keep

Secure multiparty computation setups powering tBTC signing

PKH

Public key hash

Random beacon

A secure, verifiable source of randomness accessible on the host chain.

tBTC

Deposit

A deposit is the core component in the system architecture. Each deposit represents a set of
bonded signers that generate a Bitcoin public key and accept a single Bitcoin UTXO, from which
TBTC can be drawn.

Deposit beneficiary

A deposit has a single beneficiary Ethereum account — originally set to the depositor. The
beneficiary owns the right to some fees on deposit redemption.

Deposit request

A request for signers to be selected and generate a new Bitcoin ECDSA keypair. A successful
request yields a new Bitcoin address ready to accept funds as well as a set of bonded signers.

Lot size

The ideal size of a funded deposit’s BTC UTXO. Standardizing lot sizes across deposits simplifies
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the BTC redemption process and pricing of deposits by the market.

Signing bond

The bond signers put up before a deposit is funded. This bond ensures signers will be punished
for fraud or poor uptime.

Reserved TBTC

The amount of TBTC that can’t be drawn from a new deposit. Reserving TBTC on deposit funding
sets aside funds to pay signing fee through the deposit term.

Cross-chain communication

Consensus relay

Chain-tracking SPV on some other chain, e.g. BTCRelay. Consensus relays are long-running cross-
chain mechanisms that track the consensus state of another chain. They’re distinguished from
other uses of the term "relay", eg the "threshold relay" random beacon mechanism.

SPV

Simplified payment verification

Stateless SPV

Non-chain-tracking SPV

Bitcoin & friends

P2PKH / P2WPKH

Pay to (witness) public key hash

P2SH / P2WSH

Pay to (witness) script hash

Sighash

Bitcoin signature hash algorithm

BIP 143

Adopted SegWit sighash proposal

ALL

Sighash mode committing to all outputs and all inputs

SINGLE

Sighash mode committing to one output and all inputs

ANYONECANPAY

Sighash modifier. Changes all or single to commit to only ONE input

SACP, singleACP

SINGLEANYONECANPAY
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Hash160

Bitcoin hash function rmd160(sha256(message)). Used for PKH commitments in outputs. Used for
SH commitments before segwit

Hash256

Bitcoin hash function sha256(sha256(message)). Used for txids, sighash, merkle trees, and PoW

UTXO

(unspent) transaction output

Weight unit

a measure of bitcoin transaction size. Main transaction info is 4 weight units per byte. Witness
info is 1 weight unit per byte

Vbyte

4 weight units

Outpoint

A 36-byte string that uniquely identifies Bitcoin UTXOs. It consists of the creating transaction’s
tx_id as a 32-byte LE uint256 (because Satoshi was bad), and a 4-byte LE uint32 denoting the
UTXO’s position in the creating transaction’s output vector

[1] The tBTC system participates in fairly limited fashion here, mostly coordinating work done in a secondary system responsible
for managing the secure random number generation, private data storage, and multiparty computation needed to provide the
system’s relevant security properties. In this diagram, that role is fulfilled by the Keep network, described in its whitepaper. The
Keep Random Beacon is described in more detail in the Keep Random Beacon yellowpaper.

[2] A system is only as decentralized as its most centralized component, so the beacon must be decentralized to achieve proper
decentralization of the tBTC system as a whole; however, note that tBTC is designed to be resilient even if the same entity controls
all signers in a signing group.

[3] Threshold signatures allow a group of N signers to generate a public key and a set of private key shares, with which a subset M
of the signers can create signatures on behalf of the group. For tBTC v1, signing groups are 3-of-3, meaning they are groups of 3
signers that require all 3 signers to collaborate to create signatures on behalf of the group.

[4] For tBTC v1, sufficient confirmations means 6 confirmations. Confirmation numbers that are variable, particularly in response
to volume of deposits that are opened, are part of the discussion for tBTC v2.

[5] Fraudulent signatures are signatures not explicitly authorized by the tBTC system. The system only authorizes redemption
signatures when a redemption is in progress.

[6] Note that, for deposits that have been used to back TBTC via the vending machine, the deposit owner is the vending machine
itself; by making the deposit owner whole in this case, the system ensures the TBTC supply is in line with BTC custodied by TBTC-
backing deposits.

[7] Pre-term deposits can only be redeemed by the TDT owner.
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